
PRE-GROUTING for WATER CONTROL 

and for ROCK MASS PROPERTY 

IMPROVEMENT

10th Nonveiller lecture, Zagreb, 2011

• PRE-GROUTING FOR WATER CONTROL – EXAMPLES

• CONSEQUENCES OF SHALLOW TUNNELS

• COMPARING PARTICLE SIZE WITH JOINT APERTURE

• LUGEON TESTING FOR APERTURE ESTIMATION (e and E)

• WHY HIGH-PRESSURE GROUTING WORKS BEST

• ROCK MASS QUALITY IMPROVEMENT BY GROUTING?

• VERIFICATION BY SEISMIC VELOCITY?

• TYPICAL HIGH-PRESSURE GROUTING QUANTITIES
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(“Fighting high pressure inflows”….but this is too late when they 

are experienced at the face of the tunnel)
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Attempting to post-grout 

............is almost impossible in practice)
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A pre-injection 

‘umbrella’

could probably 

have 

prevented this

(several 

weeks/months) 

delay
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Water control methods

• 1. hydrostatic or drained membrane behind cast 

concrete liner

• 2. free-standing (drained-tunnel) liner elements

• 3. pre-injection ‘umbrella’ (to reduce access to H2O)

• 4. sprayed membrane in S(fr) sandwich

These four solutions to the water problem,

have widely different prices.......#1 most, #4 least..........

but #4 is best applied after #3. Control the water first !
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• Example of expensive tunnelling solution: conventional NATM, with 

B+S(mr) for primary support, and drainage fleece-and-membrane 

behind final cast concrete secondary lining. 

• High-speed rail tunnel, jointed chalk, S. England, final cost US$ 123M /3.2 

km, or  about $ 40,000 per metre (1999-2000 price)

• ( ≈ 2½ times higher than typical NMT (single-shell) tunnel, with similar 

Q-value rock, using  B+S(fr) as permanent support, plus PC-element+ 

membrane liner, or pre-injection, for a drained-but-dry solution. 

• Some NATM tunnels today cost US $ 100,000/m !
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When water is not well 

controlled….need PC 

element drip-shield

2 x 220 km/hr airport 

link, Oslo. 15 km long 

tunnel.

This also provides a 

dry-but drained tunnel.
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BASF 345 sprayed membrane 

in sandwich

Primary rock support 

sprayed concrete .........S or 

S(fr)

Concrete-membrane 

interface: clean surface of the 

primary S or S(fr)

Spray-applied waterproofing 

membrane Masterseal®345, 

minimum thickness 3mm

Secondary sprayed concrete 

S or S(fr) inner layer1 cm



Two examples of 

single-shell 

tunnels with 

sprayed 

membrane as 

final seal against 

water.

• Lausanne Metro

• Hinehead Tunnel, UK

• These resemble NMT 

in Norway
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SOME  EXAMPLES  OF SYSTEMATICALLY  

PRE-INJECTED TUNNELS, before looking 

at design aspects.

FROM  RECENT  NORWEGIAN 

JERNBANEVERKET  TWIN-TRACK  RAIL 

TUNNELS  NEAR  OSLO
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19.5 km of new 

twin-track 

including  three 

stations and 

three tunnels 

2001-2011

1.1 billion US $

2.7 + 3.6 + 5.5 km 

tunnels  A = 105 m²,  
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Tunnel #1:Jong-Asker

2.7 km, 18 months for completion from two faces  (105 m²)

(depth 2 to 50 m)

Note dry rock behind jumbo (already pre-grouted)……see several 

examples that follow



A SEQUENCE OF (NMT-STYLE ) 

PHOTOGRAPHS FROM THE 

CONSTRUCTION (and pre-grouting 

of) THE BAERUM TUNNEL

(Tunnel #3, L = 5.5 km)
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Sandvika-Skøyen: #3 twin-track rail tunnel: Jernbaneverket,

Photo of specialized rig for pre-injection. Note contour holes.



Pre-injection screen 30-70 holes, 20-30m long, 0.5-1.0 m c/c
(Hognestad and Frogner, 2005)



Fan for Class 3 inflow control (< 4 litres/min/100 m)
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Specialised rig for pre-injection 

(AF Spesialprojekt A/S, SRG)

as used at the Jong-Asker  tunnels. 

The ‘Tanum’ and ‘Skaugum’ tunnels 

(#1, 2) driven in Cambro-Silurian 

schists, calcitic schists, then shales and 

nodular limestones and ≈ one hundred 

igneous dykes in the Oslo geology. 

Typical Q = 0.01 to100.



TYPICAL DATA / MATERIALS

 50 to100 bar pressure.

Typical consumption : 600-1200 kg of 

grout per tunnel meter.

Microcement, d95 = 12 μm



Pre-injection costs are 

approximately as follows :

 1,400 US $ /m for equivalent 20 l/min/100m

 2,300 US $ /m for equivalent 10 l/min/100m

 3,500 US $ /m for equivalent  5 l/min/100m

 ≈ 5,000 US $ /m for equivalent 1 to 2 l/min/m/100m

( in ”T10.5”, 90 m2 tunnels). 

(In some zones, the contractor achieved tightness of less 

than 1 litre/min/100m tunnel (≈ 10-9 m/s) 24



THE ABOVE WERE EXAMPLES OF 

SINGLE-SHELL TUNNELLING (NMT), 

BASED ON Q-SYSTEM-BASED 

SELECTION OF PERMANENT 

REINFORCEMENT AND SUPPORT

(this includes pre-injection when absolute 

requirement of no water is needed due to 

e.g. railway lines)
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Barton 

& Itoh, 

1995

26



NMT =

P

E

R

M

A

N

E

N

T

B + S(fr)

(C35 to 

C55)

S(fr)

&

CT-bolts 27



HOW TO DETERMINE 

APPROPRIATE GROUT SIZE
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The dilemma is how to get 

blocks (i.e. particles) that are 

too large in joints that are too 

tight.
…..smaller particles! ….. wider joints!
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Blockage if D< 4.d95

➢Boundary layer

➢Wall roughness

➢ ‘Slow’ particles

Ore passes in mines also have 

problems with large blocks 

and wall roughness

Before leaving large blocks and 

concentrating on cement

particles……….note problems

with ‘hang-up’ of blocks

in mine ore passes!



FLOW IN ROCK MASSES IS COMPLEX! 

SOME SIMPLIFICATIONS ARE NEEDED!

(BECAUSE WE ARE ENGINEERS – WE NEED A SOLUTION!)

The next screen shows how ( modified from 
Snow, 1968) one can visualize a conducting 

3D network of  joints .......much fewer
conductors  than total number of joints.......the 
mean e and S match permeability test results
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WATER INJECTION TESTS – LUGEON METHOD

(what % of test stages show zero flow?.......gives clue about  S

(m)…….numbers “1.8 per 3m test, S = 1.7 m” from next screen!
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The % of zero flow sections is utilized in an

ASSUMED POISSON DISTRIBUTION – FOR ESTIMATING

AVERAGE SPACING OF WATER CONDUCTING JOINTS

17% of ‘zero’ flow stages means 1.8 conducting joints per test length……on average

Can apply to packer spacings of 3 m, 5 m, etc.
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THE TWO DIFFERENT JOINT  APERTURES……. ‘e’  and  ‘E’



BECAUSE (e) << (E), larger cement particles than expected can 

often be used……..but high pressure helps!
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Of course………a joint-intersection, not a tube is expected!
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THEORETICAL INTERPRETATION (IN 3D) OF LUGEON RESULTS

➢ based on Snow (1968), and the hydraulic theory of Louis 1967 :

➢ permeability of one smooth parallel plate : k = e2/12

➢ permeability of 1 set of parallel plates : K1 = e2/12 x e/S

➢ permeability of ’the conducting rock mass’ (3 sets) : Kmass ≈ 2e3/12 S

➢ 1 Lugeon ≈ 10-7m/s, 10-7m/s ≈ 10-14 m2,  laminar flow

➢ 3D interpretation of Lugeon tests e ≈ (6LS x 10-8)1/3

➢ (e) and (S) in millimeters, L is average Lugeon value…each apply to 
local domain, rock 
type, or borehole 
depth



The equation  e ≈ (6LS x 10-8)1/3 looks like this for typical S-values of 0.5 

to 3.0m

Obviously it is difficult to inject cement particles into e.g. < 0.1 Lugeon rock masses

……unless E ( the physical joint aperture ) >> e ( the hydraulic aperture )
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Here we have Lugeon results from 4 depth zones at a permeable dam site

➢ (e) and (S) have been interpreted as previously explained

➢ (e) is converted to (E) using JRC (the joint roughness coefficient)

➢ Note that the ‘Grout-Take’ estimate (from this 1978 example) assumes the 

same grout pressure as the Lugeon test…….. i.e. ΔPW = 1 MPa
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JRC estimation from profile matching
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HOW TO ESTIMATE …. JRC – THE JOINT ROUGHNESS COEFFICIENT

Can be done on core from ahead of the face, or in the tunnel close to the face



WHAT CEMENTS / CEMENT-

PARTICLE GRADING CURVES 

ARE READILY AVAILABLE IN 

REGION?
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THE (approx.) LIMITS FOR INJECTION of ULTRAFINE, MICRO and industrial cement

50, 100 and 400μm limits are simpler to remember
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GROUTING BETWEEN THE JOINT SETS IS 

ACHIEVED WITH HIGHER PRESSURES
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WHEN GROUTING PRESSURE IS TOO LOW…ONLY 1 SET IS INJECTED?



THE MECHANISM OF JOINT OPENING 

WITH REDUCED EFFECTIVE 

STRESS……. i.e. WITH INCREASED 

GROUTING PRESSURE……..

(MODELLING EXAMPLES)



SMALL JOINT 

DEFORMATION WHEN 

LUGEON 

TESTING…….LARGER 

JOINT DEFORMATION 

WHEN PRE-INJECTING
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THE ADVANTAGE OF AN INCREASE OF PRESSURE ON ΔE

Note that E can be almost doubled from 30 to 60μm

…… now OK for ULTRAFINE CEMENT?

Initial  unstressed

Joint aperture 200μm
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Examples of apertures E and e

in a UDEC-BB model of twin tunnels
(Makurat and Barton, 1988: Oslo Tunnel)
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SOME RECENT ESTIMATES OF (e) – from LUGEON TESTS

and (E) – from Jr to JRC conversion.

Large (E) due to high Lugeon values...and roughness.

(ORANGE and PINK are easiest to grout)

YELLOW (OK)→GREEN→BLUE 

needs higher pressure or finer micro/ultrafine
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HIGH PRESSURE GROUTING IS UNLIKELY TO CAUSE UNWANTED 

DEFORMATION i.e. uncontrolled hydraulic opening…….

due to HYDRAULIC (Newtonian fluid) pressure decay mechanisms

THE LOGARITHMIC PRESSURE DECAY IS A ‘SAFETY MECHANISM’ for 

high pressure grouting…….while flow is still occurring….. and is extra 

effective with cohesive + frictional fluids like grout
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Logarithmic pressure decay with radial, laminar or turbulent flow 

(e.g. Cruz, 1979)
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IT IS IMPORTANT TO BE AWARE OF UPLIFT (OR TUNNEL FACE) 

DEFORMATION THAT MAY OCCUR IF FLOW HAS CEASED

AND PRESSURE IS MAINTAINED
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WHAT HAPPENS WITH TOO LOW PRESSURE, TOO TIGHT JOINTS, 

TOO LARGE CEMENT PARTICLES…..AND UNSTABLE GROUTS……

THAT BLEED WATER?
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BUT……THE NEXT SCREENS SHOW WHAT OCCURS WHEN DOING 

SUCCESSFUL INJECTION – when the grout penetrates as expected

‘WATER-SICK ROCK’......MORE WATER AFTER  PRE-GROUTING, THAN BEFORE !



Technology development steps (after Garshol, ICE/HK 2010)
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STABLE  NON-BLEEDING  GROUTS  ARE  ESSENTIAL  FOR 

PREVENTING  ’ WATER-SICK’  ROCK (Elkem/
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WHAT ABOUT ROCK MASS 

PROPERTY IMPROVEMENT

CAUSED BY SUCCESSFUL GROUTING ?

(First some indirect indications of the sealing 

of joint sets by grout)



IPT/Brazil multi-probe-multi-hole measurement of grouting

3D permeability testing (utilizing multiple holes simultaneously)

(Quadros and Correa Filho, 1995) 
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Suppose the following small improvements occur to individual Q-

parameters, due to pre-grouting…….these assumptions are so 

conservative they must be erroneous…….the Q-parameter 

improvements are usually greater !! (Barton, 2002)
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POSSIBLE BENEFITS OF PRE-GROUTING from logical Q-parameter

changes, for two different rock masses:

RQD increases e.g. 30 to 50% RQD increases e.g. 30 to 70%

Jn reduces e.g. 9 to 6 Jn reduces e.g. 12 to 4

Jr increases e.g. 1 to 2

(due to sealing of most of set #1)

Jr increases e.g. 1.5 to 2

(due to sealing of most of set #1)

Ja reduces e.g. 2 to 1

(due to sealing of most of set #1)

Ja reduces e.g. 4 to 1

(due to sealing of most of set #1)

Jw increases e.g. 0.5 to 1 Jw increases e.g. 0.66 to 1

SRF unchanged e.g.1.0 to 1.0 SRF improves e.g. 2.5 to 1.0

due to consolidation of loose material

Before pre-grouting

Q = 30/9 x 1/2 x 0.5/1 = 0.8

Vp ≈ 3.4 km/s

Emass ≈ 9.3 GPa

Before pre-grouting

Q = 30/12 x 1.5/4 x 0.66/2.5 = 0.2

Vp ≈ 2.8 km/s

Emass ≈ 5.8 GPa

After pre-grouting

Q = 50/6 x 2/1 x 1/1 = 17

Vp ≈ 4.7 km/s

Emass ≈ 25.7 GPa

After pre-grouting

Q = 70/4 x 2/1 x 1/1 = 35

Vp ≈ 5.0 km/s

Emass ≈ 32.7 GPa



HIGH-PRESURE PRE-

GROUTING ADVANTAGES

• gives TROUBLE-FREE TUNNELLING that is 

faster and cheaper and needs LESS 

SUPPORT 

• because it is the basis of a PERMANENT 

SINGLE SHELL (NMT) SOLUTION that is 

applied into/onto an IMPROVED ROCKMASS
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HOW COULD WE VERIFY IN 

SITU, THE ASSUMED 

BENEFICIAL EFFECTS OF 

PRE-GROUTING?
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The starting point from ....120 km seismic profiles, 2.8 km core

(After Sjøgren et al. 1979, with Barton, 1995 addition of Q)
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(As with all Sjøgren data: hard rock, near-surface)
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NOTE: NO CORRECTION FOR DEPTH (OR STRESS) – from central 

diagonal in previous figure – nominal depth 25m
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Grouting efficiency 

I= excellent, II= good,

III = Satisfactory, 

IV = unsatisfactory) 

……………

based on velocity 

monitoring at the Inguri 

arch dam. 

Savich et al., 1983.



“The average values for the whole

foundation were 3.18 km/s before grouting 

and 4.74 km/s after grouting which imply 

an effective Q-value increase from (very 

approximately) 0.5 to 17, or a Lugeon 

value reduction from perhaps 2 to 0.06”

(Many more cases in Barton, 2006) 
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SOME OF THE 

EMPIRICAL 

EQUATIONS 

RELATING

Q-value and

rock mass

property estimates

(Note also following:

c

v
v

Q100

SPAN





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These could give the following improvements 

in rock mass properties ……?
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HERE WE SEE THE POTENTIAL FOR REDUCED TUNNEL SUPPORT ……. IF 

THE EFFECTIVE Q-VALUE CAN BE IMPROVED
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REDUCED TUNNEL DEFORMATION…. WOULD ALSO BE SEEN IN MODELS !



80

RELATIVE TIME FOR TUNNEL EXCAVATION AND SUPPORT

………potential benefits of pre-grouting, especially if Q ≈ 0.1

N Barton, B Buen & S Roald, 2001/2002.

“Strengthening the case for grouting”

T&T International, Dec 2001 & Jan 2002.



RELATIVE COST FOR TUNNEL EXCAVATION AND SUPPORT

………potential benefits of pre-grouting, especially if Q ≈ 0.1
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CONSEQUENCES OF 

PRE-INJECTION

ON COST..... 

IF EFFECTIVE 

Q-VALUE 

CAN BE INCREASED

TRY TO ELIMINATE 

MOST OF THE LOW

Q-VALUE ROCK

i.e. Q< 1

THEN GET LOWER

COST BECAUSE OF

LESS PROBLEMS

WITH CONSTRUCTION
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How many litres of grout per m3 of 

rock mass? …… with 6m cylinder 

assumption usually 1 to 5 liters/m3.
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